A NSW Government website

Navigation Menu

Working Mathematically

Can't find what you're looking for? Search Resources

New NSW Curriculum Reform syllabus: Implement from 2023

English and Mathematics for K−2

Content relating to K−2 is now replaced by the new syllabuses available in the Digital Curriculum.

The new syllabuses must be taught in Kindergarten to Year 2 in all NSW primary schools from Term 1, 2023.

Working Mathematically relates to the syllabus objective:

Students develop understanding and fluency in mathematics through inquiry, exploring and connecting mathematical concepts, choosing and applying problem-solving skills and mathematical techniques, communication and reasoning

As an essential part of the learning process, Working Mathematically provides students with the opportunity to engage in genuine mathematical activity and develop the skills to become flexible and creative users of mathematics.

In this syllabus, Working Mathematically encompasses five interrelated components:

  1. Communicating

    Students develop the ability to use a variety of representations, in written, oral or graphical form, to formulate and express mathematical ideas. They are communicating mathematically when they describe, represent and explain mathematical situations, concepts, methods and solutions to problems, using appropriate language, terminology, tables, diagrams, graphs, symbols, notation and conventions.

  2. Problem Solving

    Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively. They formulate and solve problems when they use mathematics to represent unfamiliar or meaningful situations, design investigations and plan their approaches, apply strategies to seek solutions, and verify that their answers are reasonable.

  3. Reasoning

    Students develop an increasingly sophisticated capacity for logical thought and actions, such as analysing, proving, evaluating, explaining, inferring, justifying and generalising. They are reasoning mathematically when they explain their thinking, deduce and justify strategies used and conclusions reached, adapt the known to the unknown, transfer learning from one context to another, prove that something is true or false, and compare and contrast related ideas and explain their choices.

  4. Understanding

    Students build a strong foundation that enables them to adapt and transfer mathematical concepts. They make connections between related concepts and progressively apply the familiar to develop new ideas. Students develop an understanding of the relationship between the ‘why’ and the ‘how’ of mathematics.

    They build understanding when they connect related ideas, represent concepts in different ways, identify commonalities and differences between aspects of content, describe their thinking mathematically, and interpret mathematical information.

  5. Fluency

    Students develop skills in choosing appropriate procedures, carrying out procedures flexibly, accurately, efficiently and appropriately, and recalling factual knowledge and concepts readily. They are fluent when they calculate answers efficiently, recognise robust ways of answering questions, choose appropriate methods and approximations, recall definitions and regularly use facts, and manipulate expressions and equations to find solutions.

The five components of Working Mathematically describe how content is explored or developed − that is, the thinking and doing of mathematics. They provide the language to build in the developmental aspects of the learning of mathematics. The components come into play when students are developing new skills and concepts, and also when they are applying their existing knowledge to solve routine and non-routine problems both within and beyond mathematics. At times the focus may be on a particular component of Working Mathematically or a group of the components, but often the components overlap. While not all of the Working Mathematically components apply to all content, they indicate the breadth of mathematical actions that teachers need to emphasise.

In addition to its explicit link to one syllabus objective, Working Mathematically has a separate set of outcomes for the components Communicating, Problem Solving and Reasoning. This approach has been adopted to ensure students’ level of proficiency in relation to these components becomes increasingly sophisticated over the years of schooling.

Separate syllabus outcomes have not been developed for the Working Mathematically components Understanding and Fluency. These components are encompassed in the development of knowledge, skills and understanding across the range of syllabus strands, objectives and outcomes.

Teachers are able to extend students’ level of proficiency in relation to the components of Working Mathematically by creating opportunities for their development through the learning experiences that they design.

Copied
Complementary Content
${loading}