Physics

DATA SHEET

Charge on electron, q_e	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_e	$9.109 \times 10^{-31} \text{ kg}$
Mass of neutron, m_n	$1.675 \times 10^{-27} \text{ kg}$
Mass of proton, m_p	$1.673 \times 10^{-27} \text{ kg}$
Speed of sound in air	340 m s^{-1}
Earth's gravitational acceleration, g	9.8 m s^{-2}
Speed of light, c	$3.00 \times 10^8 \mathrm{m\ s^{-1}}$
Magnetic force constant, $\left(k \equiv \frac{\mu_0}{2\pi}\right)$	$2.0 \times 10^{-7} \text{ N A}^{-2}$
Universal gravitational constant, G	$6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
Mass of Earth	$6.0\times10^{24}\mathrm{kg}$
Planck constant, h	$6.626 \times 10^{-34} \mathrm{J s}$
Rydberg constant, R (hydrogen)	$1.097 \times 10^7 \mathrm{m}^{-1}$
Atomic mass unit, u	$1.661 \times 10^{-27} \text{ kg}$ 931.5 MeV/ c^2
1 eV	$1.602 \times 10^{-19} \mathrm{J}$
Density of water, ρ	$1.00 \times 10^3 \text{ kg m}^{-3}$
Specific heat capacity of water	$4.18 \times 10^3 \mathrm{Jkg^{-1}K^{-1}}$

FORMULAE SHEET

$\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$	$\vec{E} = -\frac{V}{\vec{d}}$	$\frac{\vec{F}}{l} = \frac{\mu_0}{2\pi} \times \frac{I_1 I_2}{\vec{r}}$
$\vec{v} = \vec{u} + \vec{a}t$	$\vec{E} - \frac{1}{2} \times \frac{q_1 q_2}{q_2}$	$\Phi = BA$
$\vec{v}^2 = \vec{u}^2 + 2\vec{a}\vec{s}$	$\vec{F} = \frac{1}{4\pi\varepsilon_0} \times \frac{q_1 q_2}{r^2}$	$_{_{ m L}}\Delta arPhi$
$\vec{F} = m\vec{a}$	$V = \frac{\Delta U}{q}$	$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$
$W = \vec{F}_{\text{net}}\vec{s}$	q	$\frac{V_p}{V_c} = \frac{N_p}{N_c}$
net	$I = \frac{q}{t}$	$V_{_{\mathcal{S}}}$ $N_{_{\mathcal{S}}}$
$\Delta U = m\vec{g}\Delta\vec{h}$		$V_p I_p = V_s I_s$
$P = \frac{\Delta E}{t}$	$V = \frac{W}{q}$	$\vec{\tau} = n\vec{B}IA\cos\theta$
$P = \vec{F}\vec{v}$	$R = \frac{V}{I}$	$d\sin\theta = m\lambda$
$\sum m\vec{v}_{\text{before}} = \sum m\vec{v}_{\text{after}}$	P = VI	$I = I_{\text{max}} \cos^2 \theta$
$\sum \frac{1}{2} m \vec{v}_{\text{before}}^2 = \sum \frac{1}{2} m \vec{v}_{\text{after}}^2$	E = Pt	$\lambda_{\text{max}} = \frac{b}{T}$
$\Delta \vec{p} = \vec{F} \Delta t$	$B = \frac{\mu_0 I}{2\pi r}$	$E_k = hf - \Phi$
$v = f\lambda$	$B = \frac{\mu_0 NI}{I}$	$t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$
$f = \frac{1}{T}$	L	$\sqrt{\begin{pmatrix} 1 & c^2 \end{pmatrix}}$
$k = \frac{2\pi}{\lambda}$	$\vec{a} = \frac{\left \vec{v}\right ^2}{\vec{r}}$	$l = l_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$
$f_{\text{beat}} = \left f_2 - f_1 \right $	$\sum \vec{F} = \frac{m \vec{v} ^2}{\vec{r}}$	V (C)
$f' = f \frac{\left(v_{\text{wave}} + v_{\text{observer}}\right)}{\left(v_{\text{wave}} - v_{\text{source}}\right)}$	$\omega = \frac{\Delta\theta}{t}$	$p_{v} = \frac{mv}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$
$n_x = \frac{c}{v_x}$	$\vec{\tau} = \vec{r} \vec{F}_{\perp}$	$E = mc^2$
$n_1 \sin(i) = n_2 \sin(r)$	$\left \vec{\tau}\right = \left \vec{r}\right \left \vec{F}\right \sin\theta$	E = hf
$\sin(i_c) = \frac{1}{n_r}$	$\vec{F} = -\frac{GMm}{\vec{r}^2}$	$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$
$I_1 r_1^2 = I_2 r_2^2$	$v_{\rm o} = \frac{2\pi r}{T}$	()
$\Delta Q = mc\Delta T$	$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$	$\lambda = \frac{h}{mv}$
$\frac{Q}{t} = \frac{kA\Delta T}{d}$	1 170	$N_t = N_o e^{-\lambda t}$
•	$\vec{F} = q\vec{v}\vec{B}\sin\theta$	
$\vec{E} = \frac{\vec{F}}{q}$	$\vec{F} = \vec{B}I\vec{l}\sin\theta$	$\lambda = \frac{\ln(2)}{t_{\frac{1}{2}}}$

NTS 2 He 4.003 Helium	5 6 7 8 9 10 B C N O F Ne	12.01 14.01 16.00 19.00 Carbon Nitrogen Oxygen Fluorine	14 15 16 17 S	28.09 30.97 32.07 35.45	1 Silicon Phosphorus Sulfur Chlorine	32 33 34 35 Ge Br	69.72 72.64 74.92 78.96 79.90	Gallium Germanium Arsenic Selenium Bromine	49 50 51 52 53	In Sn Sb Te I	114.8 118.7 121.8 127.6 126.9	Indium Tin Antimony Tellurium Iodine	81 82 83 84 85	TI Pb Bi Po At	204.4 207.2 209.0	Thallium Lead Bismuth Polonium Astatine	113 114 115 116 117	Nh Fi Mc Lv	ernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
IC TABLE OF THE ELEMENTS KEY	Atomic Number 79 Symbol Au					26 27 28 29 3 Fe Co Ni Cii	58.93 58.69 63.55	Cobalt Nickel Copper	45 46 47	Rh Pd Ag	102.9 106.4 107.9	Rhodium Palladium Silver	$\frac{1}{2}$	Ir Pt Au	192.2 195.1 197.0	Iridium Platinum Gold	111 011 601	Mt Ds Rg	Hassium Meitnerium Darmstadtium Roentgenium Copernicium
PERIODIC	Atomi	Standard Atomic Weight Name				23 24 25 V	52.00 54.94	Chromium Manganese	42 43	Mo	95.96	Molybdenum Technetium	74 75	W Re	183.9 186.2	Tungsten Rhenium	106 107	Sg Bh	Dubnium Seaborgium Bohrium
	e	12 Iium	2	31	ssium	0 21 22 3 Sc T;	44.96	Scandium	39	X	88.91	Yttrium	57–71			Lanthanoids	89-103		ium Actinoids Rutherfordium
1 H 1.008 Hydrogen	3 4 Li Be											\dashv				+			Francium Radium

57	28	59	09	61	62	63	64	9	99	<i>L</i> 9	89	69	70	71
La	Se	Pr	Nd	Pm	Sm	En	PS Cq	$^{\mathrm{Tb}}$	Dy	Н0	Ēŗ	Tm	Yb	Γn
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
Lantnanum	Cerium	Fraseodymium	Ineodymium	Prometnium	Samarium	Europium	Gadonnium	ıeroıum	Dysprosium	ноішіпш		Eroium	-	ununuu

68 7	90 L	91 Da	92	93 Na	94 Du	l
	232.0	231.0	238.0	det	n 1	
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.

Lawrencium

Mendelevium

Fermium

Californium Einsteinium

Berkelium

103 Lr

102 No

101 Md

100 Fm

99 Es

98 Cf

97 Bk

96 Cm

95 Am

BLANK PAGE